SHORT COMMUNICATIONS

Lithium Aluminum Oxyfluoride Spinel

By Hiroaki Yanagida, Goro Yamaguchi and Yuzo Ono

Department of Industrial Chemistry, Faculty of Engineering, The University of Tokyo, Hongo, Tokyo (Received March 7, 1966)

Kordes¹⁾ obtained a spinel-like mineral from a mixture of lithium fluoride and aluminum oxide by heating it to 1300°C. He supposed that a LiF-Al₂O₃ spinel form exists. However, he determined the mineral obtained at 1300°C to be Li₂O-5Al₂O₃, which did not contain fluorine; he did not mention the composition of the products at lower temperatures further. All of the spinel structures previously investigated contain only oxygen or sulfur as an anion, except for the aluminum oxynitride spinel, A1N-Al₂O₃, investigated by Yamaguchi and Yanagida²⁾ and by Adams, AuCoin and Wolff.33 It may be supposed, from a consideration of the ionic radii, that there exists a spinel form, LiF-Al₂O₃, which contains fluorine as an anion, in comparison with MgO-Al₂O₃ or AlN-Al₂O₃.

TABLE I. DIFFERENCES BETWEEN THE TWO SPINELS

		II
	I	The spinel ob-
	$\text{Li}_2\text{O}\cdot 5\text{Al}_2\text{O}_3$	tained from
	•	$LiF-Al_2O_3$
Starting materials	Li ₂ CO ₂ +	LiF 40 mol.%-
	γ -Al ₂ O ₃ ·3H ₂ O	γ -Al ₂ O ₃ ·3 $\overset{\circ}{H}_2$ O
Temp.	>900 $^{\circ}$ C	800—900°C
Lattice dimention	a = 7.906 Å	a = 7.922Å
Super lattice		
peaks		
(2,1,1)	12.7	
(2,1,0)	16.5	4.4
(1,1,0)	11.6	4.0
F content by	none	present at least
NMR		11%

¹⁾ E. Kordes, Z. Krist., A91, 193 (1935).

Mixtures of fine-grained γ -Al₂O₃-3H₂O or α -Al₂O₃ and chemically pure lithium fluoride or lithium carbonate were heated at 600—1200°C for 0.5—3 hr. in an electric furnace in air. The products were then washed with hydrochloric acid to eliminate a trace of contamination by lithium fluoride and were analyzed by powder X-ray diffraction.

The single spinel phase was formed from the mixtures of lithium fluoride (35—40 mol. percent) and γ-Al₂O₃-3H₂O (60—65 mol. percent) heated at 800—900°C for more than an hour. This spinel phase was then compared with the lithium aluminum oxide spinel, Li₂O-5Al₂O₃ (denoted as I in Table I). The cubic lattice dimensions, the intensity ratios of such super lattice lines⁴² as (2, 1, 1), (2, 1, 0), (1, 1, 0) to a normal line (3, 1, 1), are distinctly different in the two spinels. This shows that the II spinel in Table I is to be distinguished from the I spinel.

The semi-quantitative analysis of fluorine was carried out by broad-line NMR using a mixture of AlF_3 and α - Al_2O_3 as a reference. It was ascertained that the II spinel contained more than 11 percent fluorine, which corresponded to about 70 percent of the value calculated from the LiF- Al_2O_3 formula.

Thus, it is suggested that the II spinel obtained in the present work may either be in a spinel formula, LiF-(1+x)Al₂O₃, or in a solid solution of LiF-Al₂O₃ and Li₂O-5Al₂O₃. The true formula will be determined after an exact quantitative analysis of fluorine, which is now being attempted by the present authors using different methods.

²⁾ G. Yamaguchi and H. Yanagida, This Bulletin, 32, 1264 (1959).

³⁾ I. Adams, T. R. AuCoin and G. A. Wolff, J. Electrochem. Soc., 109, 1050 (1962).

⁴⁾ P. B. Braun, Nature, 27, 1123 (1952).